Synopsis: X = linsolve_gmres(SpMat M, vec b[, int restart][, Mrecond P][,’noisy’][,’res’, r][,’maxiter’, n])
Solve M.X = b with the generalized minimum residuals method.
Optionally using P as preconditioner. The default value of the restart parameter is 50.
Synopsis: X = linsolve_cg(SpMat M, vec b [, Mrecond P][,’noisy’][,’res’, r][,’maxiter’, n])
Solve M.X = b with the conjugated gradient method.
Optionally using P as preconditioner.
Synopsis: X = linsolve_bicgstab(SpMat M, vec b [, Mrecond P][,’noisy’][,’res’, r][,’maxiter’, n])
Solve M.X = b with the bi-conjugated gradient stabilized method.
Optionally using P as a preconditioner.
Alias for gf_linsolve(‘superlu’,...)
Solve M.U = b apply the SuperLU solver (sparse LU factorization).
The condition number estimate cond is returned with the solution U.
Solve M.U = b using the MUMPS solver.